
PreFPIX2: Core Architecture and Resu l t s1

J. Hoff, A. Mekkaoui, D. Chriltian, S . Zimmerman, G. Cancelo, R. Yarema
Fermilab, P.O. Box 500, Batavia, Illinois 605 10

Abstract
FPIX is a pixel architecture designed for colliding-beam

experiments at the Tevatron. Its most important application
to date is the BTeV experiment. PreFPIX2 is a chip designed
to test the FPIX Core, i.e. the pixel control and r
architecture. This FPIX Core will be mated to a Periphqy
specific to a particular experiment.

Earlier plans called for the BTeV FPIX chip to be
designed in a rad-hard process. However, deep-submicron
CMOS processes have demonstrated appropriate radiation
tolerance at a lower cost and with greater reliability.
Therefore, PreFPIX2 has been fabricated in a 0.25 micron
process utilizing radiation tolerant design techniques.

The architecture has undergone substantial development
from earlier versions of FPIX. Most notable are the
improvements to the column token passing scheme and to the
End-of-column logic. Extensive simulations were performed
using both SPICE and structural-level Verilog. Monte Carlo
physics simulations of the BTeV pixel detector at half, full
and double the planned luminosity were converted to Verilog
compatible input files for the chip csimulations, allowing the
designers to observe the chip operating under real conditions
and for extended periods of time. Analyses of the results
reveal that at , all luminosities the FPIX Core correctly
identifies better than 99.6% of input hits. Bench tests of
fabricated chips confirm the accuracy of the simulations.

I. INTRODUCTION
The FPIX architecture has been under development at

Fermilab for the last three years. At present, the driving force
behind this work is the BTeV experiment [l] though
significant effort has been made in the design process to
broaden the applicability of this architecture to fit any
Tevatron experiment. In BTeV, the pixel detector will be
employed for on-line track finding for the lowest level trigger
system [2], and therefore, the pixel chips are required to read
out all hit data from every crossing [3]. Given the expected
distance from the beam (6” for the nearest chips) and the
expected luminosity (2x16’ cm” s-’), this means that the
chip closest to the beam line will be expected to read out an
average of 1.25 pixels per BCO crossing with statistical
fluctuations often much higher.

PreFPIX2 is a developmental step in the evolution of the
final FPIX architecture [4]. After the completion of FPIXl, it
became apparent that certain functions such as pixel control
and readout were independent of the requirements of any

’ This work is sponsored by the U.S. Department of
Energy under contract No. DE-AC02-76CH03000

given experiment but that other functions, like data packing
and communication with data acquisition hardware, changed
for every experiment. Those functions independent of
experimental requirements were organized into the FPIX
Core. Experimentally dependent requirements were
organized into the Periphery. PreFPIX2 represents the
completion of the FPIX Core architecture. The FPIX
Periphery specific to the BTeV experiment is under
development.

TMe’chip was developed in a 0.25pm process, using
radiation tolerant design techniques such as enclosed
translstors [5] . Recent tests show that this will enable FPIX
to achieve the desired radiation tolerance (25-30 Mrad)
without resorting to a rad-hard process [6]. PreFPIX2 has
been developed to test a number of algorithmic and electrical
modifications to the original read-out control system
cleveloped in FPIXl [4]. Most notably, the programmable
ability to operate in either an externally triggered or a self-
triggered mode has been eliminated. The FPIX Core itself is
now purely self-triggered.

In Section 11, the FPIX Core architecture will be
described, Section 111 will cover major developments to the
FPIX , architecture. Finally, Section IV will discuss the
detailed simulation technique employed in preFPIX2B
development and the results obtained thus far.

11. FPIX ARCHITECTURE

A. Core versus Periphery
The basic job of the FPIX Core is to convert the various

pixel hits into a predictable data streain (see Figure 1).
Whenever coreTalking is active, the Core will output a new
data word (coreData) with every rising edge of the Readout
clock. Moreover, coreData will be stable by the falling edge
of the Readout clock . When coreTalking is inactive,
coreData is zero.

CoreData itself is a 24-bit wide word that consists of three
bits for hit magnitude from a 3-bit FADC located in each
Pixel Cell, five bits for column location, eight bits for row
location, and eight bits for time stamp.
I I

IcoreData a WO X W1 X W2 X W3 E O

Figure 1 FPIX Core Data Stream.

9- 103
0-7803-6503-8/0 I /$I 0.00 200 I IEE

c 1
18x160

Pixel Dete -
18x160

Pixel Dete - + Core Re]ectHits Periphery

SendData

Read clock

.or I
I FPlX Architecture I

Figure 2 The Core - Periphery arrangement in the FPIX
architecture

The Periphery communicates with the Core by providing
the clocks and two control signals, RejectHits and SendData.
When RejectHits is active, the Core is instructed to stop
accepting new hits. Pixels already hit can still be read out.
When SendData is active, the Periphery is telling the Core
that it is ready to accept data. When SendData is inactive,
the Core will send no more data, but it can continue to accept
hits.

Using the structure in Figure 2, it is possible to imagine a
wide range of Periphery cells customized to an experimentk
needs.

B. Core Organization
The FPIX Core is a column-based architecture that uses

an indirect addressing scheme to associate pixel hits with a
time stamp. It is best understood as consisting of three
mutually dependent functional blocks as shown in Figure 3.
These three blocks are the Core Logic, the End-of-column
Logic and the Pixel Cell.

The Core Logic understands time. At the rising edge of
the beam clock, it stamps every time slice with an eight-bit
beam crossing (BCO) number. This number is broadcast to
all End-of-column Logic blocks. The Core Logic also
contains a very simple state machine that knows if the Core is
Talking or Silent. The Core is Silent until the End-of-
column Logic blocks indicate that they have data to output.
When this happens, at the next rising edge of the Readout

Pixel Cell

Pixel Cell

End of Column End of Column End of Column End of Column
Logic - Logic - Logic - Logic -

Figure 3 The FPIX Core Organization. In a full FPlX chip,
there would be 18 columns with 160 Pixel Cells,per column

clock, the Core will switch to the Talking state, and output
can begin. The Core Logic does not wait for any kind of chip
token or validation from the Data Acquisition (DAQ)
hardware. That would be the job of the Periphery block.
While in the Talking state, the Core starts passing a
Horizontal Token across the End-of-column Logic blocks to
arbitrate rights to the output bus. When the Horizontal
Token drops out of the other side of the End-of-column Logic
blocks readout is done. The Core switches back to the Silent
state at the next rising edge of the Readout clock.

The End-of-column Logic blocks are considerably more
complicated. They also understand time in that, whenever
there is a hit, they store the BCO numbers broadcast by the
Core Logic. Obviously, they also understand hits, which are
driven to them from the Pixel Cells via the HFastOR signal, a
distributed OR-gate with a pull-down transistor in every Pixel
Cell in the column. The End-of-column Logic Blocks also
understand the existence of the Pixel Cells because they
communicate to those pixels through a series of commands
and tokens. Finally, the End-of-column Logic Blocks
understand output. When the Core is in the Talking state and
when a particular End-of-column Logic Block has the
Horizontal Token and when that End-of-column Logic Block
has hit pixels to output, then it outputs those pixels.

The Pixel Cells themselves know nothing of time. They
only understand hits and commands from their End-of-
column Logic block. These commands are Idle (do nothing),
Listen (listen for new hits), Reset (reset your contents), and
Output (output your contents). There are four sets of such
commands coming from the End-of-column Logic block. If a
pixel is Empty and it receives a hit, it associates itself with
whichever command set is issuing the Listen command.
From that point and until the Pixel Cell is reset, it obeys only
the commands from the associated command set. The Pixel
Cells also communicate back to the End-of-column Logic
bock via the fast ORs. The HFastOR communicates hits in
response to a Listen command and the FGastOR
communicates the presence of Pixel Cells as yet unread in
response to an Output command. Rights to the column output
bus are arbitrated by a Column Token issued by the End-of-
column Logic block.

The original FPIX architecture included the ability to
switch between an externally triggered or self-triggered
mode. In the externally triggered mode, an external source
provided the chip with a BCO number which was compared
to the BCO numbers latched in the End-of-column Logic
Blocks. In the self-triggered mode, a second BCO counter
broadcast requested BCO numbers. If there was a match with
any stored BCO number in any End-of-column Logic block,
then the counter would be stopped and all hit pixels
associated with that BCO number would be read out. This
constant need to compare requested BCO numbers to stored
BCO numbers reduced the efficiency of the readout scheme.
In preFPIX2, there are no such BCO comparisons. Instead, if
any End-of-column Logic block has any data to output, it
immediately alerts the Core Logic, which then switches to the
Talking state. Unlike the original output scheme, this
method does not guarantee that hit pixels would be output in

9- 104

time stamp order. However, the new output scheme
dramatically improves readout efficiency.

111. DEVELOPMENTS IN PREFPIX2

A. End-of-column Logic
The original FPIX architecture utilized four Command

State Machines, one for each command set. The state
machines were simple, with only two states, Empty and Full.
However, since the state machines made their transitions at
the rising edge of the BCO clock, great pains were necessary
to ensure that information synchronous to the Readout Clock,
such as the completion of an output, arrived to these state
machines with enough setup and hold time. Moreover, the
original architecture required a priority encoder state
machine to determine which command set would be the next
to issue the Listen Command. This required a substantial
amount of room, and created some timing problems of its
own.

In the new FPIX Core, these problems are solved as
shown in Figure 4. First, there is the addition of the Column
State Machine, which operates at the rising edge of the

ommand State Machine
(changes on the rising edge of the BCO clock)

Hit Priority AND

State

olumn State Machine
(changes on the rising edge of the Read clock)

Horizontal Token

Figure 4 End-of-column Logic State Machines

Readout Clock. Second, the simple two-state Command State
Machines are replaced with four-state Command State
Machines that still operate on the rising edge of the BCO
clock. By developing the state machines with different
clocks, the synchronicity problems are eliminated. The
Column State Machine governs all activity that must be
synchronous with the Readout Clock. The Command State
Machines govern all activity that must be synchronous with
the BCO Clock.

A simple, purely combinatorial priority encoder chooses
which Command State Machine will be the next to enter the
Listen,state from among those state machines currently in the
Empty State. In the Empty State, the Command State
Machines issue the Idle Command. In the Listen State, they
issue the Listen Command. Once a hit is received, several
things happen. First, the BCO number currently being
broadcast by the Core Logic is stored in a register associated
with the Command State Machine currently in the Listen
State. Second, that state machine makes the transition to the
Full State where it once again issues the Idle command.
Third, the state machine picked by the Hit Priority Encoder as
next to Listen moves to the Listen State.

Since it is possible for more than one Command State
e to be in the Full state at the same time, a second

priority encoder is required. This Output Priority Encoder is
necessarily more complicated than the Hit Priority Encoder.
For example, if the DAQ system can read a chip faster than
hits are input to it, then low priority Command State
Machines may never enter the Listen state, and this would
have no effect on our efficiency. High priority Command
State Machines would do all the work. However, if a state
machine enters the Full state, then it must reach the Output
state as quickly as possible or that data will be lost. In other
words, somehow all machines in the Full state must have
equal priority while, at the same time, something must
distinguish them so that a choice can be made. Finally, to
minimize the transistor count and to maintain the isolation of
the Readout and BCO clocks, the Output Priority Encoder
must also be purely combinatorial. The solution is to rely on
the states of the Command State Machines and to use a
circular scheme as shown in Figure 5. If State Machine A is
in the Output state, then State Machine B has the highest
priority in the Output Priority Encoder, then C and then D. If
State Machine B is in the Output state, then State Machine C
has the highest priority then D and then A. If no one is in the
Output state, then State Machine A has the highest priority.
Once in the Output State, the state machine issues the Output
Command until it receives the Output Done signal from the
Column State Machine. At that point, the Reset Command is
issued as a redundant means of making sure all pixels
associated with this Command State machine are cleared.

The Column State Machine starts in the “Nothing to Say”
or Nothing State where it remains until it sees an Output
(Read) command issued by any of the Command State
Machines. At the next rising edge of the Read Clock, the
Column State Machine makes the transition to the
‘Something to Say” or Something State. At this point, the
Core logic is alerted to the fact that there is data to output,

9- 105

Output Full

HA
From

Full A

output

Full

output full

TckenIn

I I

Figure 5 A Logical Diagram of the Output Piiority Encoder

and the Column Tokens are sent up to the first Pixel Cell that
needs to be output. The state machine then waits for the
arrival of the Horizontal Token from the Core Logic. When
the token arrives, the Column State Machine makes the
transition to the Talking state, and it releases the Readout
clock to the Pixel Cells enabling them to output their data.
Simultaneously, the stored BCO number (which associates
the hit pixels with the time they were hit) is driven onto the
bus. The last pixel is being read out when the RFastOR goes
away. This signals the completion of the read cycle. At the
next rising edge of the Read Clock, the Column State
Machine makes the transition to the Silent state. This sets
the Output Done signal informing the Command State
Machine that it can make its own transition from the Output
to the Empty State. The Output Done signal is reset when the
Command State Machine reaches the Empty state. When the
entire array has been read out, the Horizontal Token drops
out of the last End-of-column Logic Block, and the Core
Logic makes its transition from Talking to Silent. This
signals to all the Column State Machines that they can make
their own transition back to the Nothing State.

B. Token Passing Logic
Experience with earlier versions of FPIX has revealed that

there are two limiting factors in readout speed related to the
Column Token.

First, speed is limited by how fast the token can be passed
from one hit pixel to another. Once a hit pixel has been
ordered to Output, it waits for the Column Token, grabs it
and then drives its data onto the bus at the rising edge of the
Read Clock. Simultaneously, it releases the token to the next
hit pixel in the column. Under worst case conditions, that
token must travel almost the entire length of the column
before it reaches the next hit pixel and it must do this before
the next rising edge of the Read Clock. The amount of time
it takes for the token to pass through an empty pixel is called
the skip frequency. Therefore, the maximum readout speed is

Figure 6: The Token Passing circuitry

equal to the skip frequency divided by the number of pixels in
the column.

Second, speed is limited by how long it takes an entire
column to restore itself after a read has been completed. This
determines how rapidly successive read cycles can be made.

The token passing architecture shown in Figure 6 has
been optimized in preFPIX2 to permit skipping frequencies
between 7 and 8GHz, yielding readout clock frequencies in
excess of 40 MHz. It is also resettable, allowing for
maximum speed in successive read cycles.

IV. MONTE CARLO-VERILOG SIMULATION

A unique and very comprehensive method of design and
simulation was used on the FPIX Core. First, individual
digital subcircuits including nand gates, nor gates, inverters,
CMOS transmission gates, SR-flip-flops and D-flip-flops
were simulated using SPICE to determine their best, worst
and typical propagation delays. Next, all critical drivers such
as Command Drivers and Address Drivers were similarly
evaluated under their expected loads. All of these delays
were transferred into the Verilog hardware description
language. Then the readout architecture and control system
were constructed in a bottom-up fashion from those basic
digital components. No behavioral modeling was permitted
in the FPIX Core, and great attention was given to ensuring
that gates were not excessively loaded with capacitance. The
net result was a Verilog model of the FPIX Core accurate to
the gate level and, in many places, the transistor level. It
modeled the entire data path from the output of each of the
2880 analog front-ends to the pads of the chip.

This procedure yielded a number of benefits. First,
through software, purely structural Verilog code can be
converted into schematics. Therefore, layout-versus-
schematic (LVS) comparisons became, in effect, layout-
versus-Verilog comparisons. Second, this design procedure
ultimately produced a Verilog model of the Core that was

9-106

extremely accurate with respect to timing. SPICE
simulations were performed regularly at higher and Pigher
levels of the hierarchy to ensure this.

Next, the analog front end of each pixel was mod$ed,
behaviorally. The model describes both the time walk an& ’
the dead time of the analog front end. Moreover, the model
includes the way time walk and dead time change as a
function of charge magnitude. The information necessary for
this model was determined experimentally from prototype
versions of the front end.

Monte Carlo analysis of 5000 beam crossover periods in
the interaction chamber was done using MCFAST, maki’ng
geometric cuts around the region that would be occupied by
the hottest chip. This produced a list of hit pixels with their
associated charge magnitudes in each of the 5000 time slices.
Different analyses were made assuming the expected
luminosity of the beam, half that luminosity and twice that
luminosity. The results of these analyses were converted into
Verilog and used as input to the FPIX Core model.

Finally, a rudimentary DAQ system was modeled to
capture the output of the FPIX Core. This output was
reconstructed into hit pixels, their hit magnitude and time
stamp. The input and output lists were compared and
additional lists were made of matches, missing members of
the input list, and extra members of the output list (see
Table 1).

Luminosity # of hit # of # of
pixels unmatched unmatched
in the members of members of
input the input list I the output list I I I list I

lx103’ cm-2 s-*

2 ~ 1 0 ~ ~ cm-2 s-2

1342 0 0

2751 2 3

I 4x103’ cm-’s-’ I 11643 I 33

The number of unmatched members of the input list in
Table, 1 is usually related to situations where hits cannot be
accepted by a pixel. For example, if all of the Command
State Machines are either in the Full or Output states, then no
Command State Machines are available to be transferred to
the Listen state. Under these conditions, the column can
accept no new hits, and therefore, those hits are missing from
the output list.

16

v. CONCLUSIONS

,The FPIX Core architecture has been completed.
Substantial improvements were made to its architecture,
resulting in readout efficiencies greater than 99.6%. Rigid
adherence to bottom-up design techniques, with great
attention paid at the start of the project to propagation delays
in low-level digital cells, resulted in a Verilog model of the
architecture that was accurate at the gate level to the final
design. Therefore, the Verilog model could be compared to
the final layout using standard CAD software. The modelk
timing was also very accurate even at the highest levels.
Monte Carlo simulations of the interaction region performed
by the physicists on the BTeV project were used as inputs to
the model of the FPIX Core. This enabled the designers to
exhaustively test the design. It also permitted the chip
designers to present to the system designers a description of
expected data stream coming from the chip.

VI. ACKNOWLEDGMENTS

The authors would like to thank AI Dyer for his
exceptional wire-bonding abilities and Gerry Dychakowsky
for PC board layout. We would also like to thank Penny
Kasper for the MCFAST Monte Carlo data.

VII. REFERENCES
A. Kulyatsev, et al “A Proposal for an Experiment to
Measure Mixing, CP Violation and Rare Decays in
Charm and Beauty Particle Decays at the Fermilab
Collider - BTEV”, Fermilab-Proposal-897.
G. Cancelo, et al, “High Readout Speed Chip Developed
at Fermilab”, Fermilab-Conf-98/278, published in the
Proceedings of the Fourth Workshop on Electronics for
LHC Experiments, Rome, Italy, September, 1998

D. Christian, “Development of a pixel readout chip for
BTeV”, Nuclear Instruments & Methods in Physics
Research A, 435m 144-152 (1999).
J. Hoff and A. Mekkaoui, ‘FPIX Core Architecture and
the PreFPIX2 Chip”, Fermilab-TM-2 1 10,
W. Snoeys, “Radiation tolerance beyond 10 Mrad for a
pixel readout chip in standard submicron CMOS”, Proc.
Of the 4‘h Workshop on Electronics for LHC
Experiments, Rome, September, 1998, CERN/LHCC/98-
36, 114
A. Mekkaoui and J. Hoff, “30 MRad (SO?) Radiation
tolerant pixel front end for the BTeV experiment”Pr0c.
Of Pixel 2000, Genova, June, 2000.

9-107

